

JX-003-001544

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

October - 2019

Statistical: Paper-S-502

(Statistical Inference)
(Old Course)

Faculty Code: 003 Subject Code: 001544

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70

Instructions:

- (1) All questions are compulsory.
- (2) Question one carry **20** marks, Questions-2 & Question-3 carry **25** marks.
- (3) Students can use their own Scientific Calculator.
- 1 Filling the blanks and short questions: (Each 1 marks) 20
 - 1. A value of an estimator is called a/an .
 - 2. An estimator T_n which is most concentrated about parameter θ is the ____ estimators.
 - 3. If T_n is an estimator of a parametric function $\tau(\theta)$, the mean square error of T_n is equal to _____.
 - 4. If an estimator T_n converges in probability to the parametric function $\tau(\theta), T_n$ is said to be a _____ estimator.

5.	If T_n is an estimator of a parameter θ of the density $f(x;\theta)$
	the quantity $E\left[\frac{\partial}{\partial \theta} \log f(x;\theta)\right]^2$ is called the

- 6. If $S = s(X_1, X_2, X_3, ..., X_n)$ is a sufficient statistic for θ of density $f(x;\theta)$ and $f(x_i;\theta)$ for i = 1,2,3,...n can be factorised as $g(s,\theta)h(x)$, then $s(X_1, X_2, X_3, ... X_n)$ is a
- 7. An estimator of $v_{\theta}(T_n)$ which attains lower bound for all θ is known as _____.
- 8. If a random sample x_1, x_2, x_3, x_n is drawn from a population $N(\mu, \sigma^2)$, the maximum likelihood estimate of μ is ______
- 9. An unbiased and complete statistic is compulsorily ______.
- 10. Let $x_1, x_2, x_3..., x_n$ be a random sample from a density $f(x, \theta) = \theta e^{-\theta x}$. Then the Cramer-Rao lower bound of variance of unbiased estimator is ______.
- 11. _____ is an unbiased estimator of p^2 in Binomial distribution.
- 12. Method of moments for estimating the parameters of a distribution was given by _____ in 1894.
- 13. The estimation of a parameter by the method of minimum Chi-square utilizes ______ statistic.

- 14. If we have a random sample of size n from a population $N(\mu, \sigma^2)$, then sample mean is ______ efficient than sample median.
- 15. Let there be a sample of size n from a normal population with mean μ and variance σ^2 . The efficiency of median relative to the mean is _____.
- 16. Define Likelihood function.
- 17. Name different criteria of good estimators.
- 18. Write likelihood function of

$$f(x,\theta) = {\binom{-k}{x}} \theta^k (\theta - 1)^x; 0 \le \theta \le 1.$$

- 19. Write likelihood function of Poisson distribution.
- 20. Obtain Cramer-Rao lower bound of variance of unbiased estimator of parameter of $f(x, \theta) = xe^{-x\theta}$; $0 \le x \le \infty$.
- 2 (a) Write the answer any THREE: (Each 2 marks) 6
 - 1. Define Parameter space.
 - 2. Define Efficiency.
 - 3. Define Sufficiency.
 - 4. Define Uniformly Most Powerful Test (UMP test)
 - 5. Define ASN function of SPRT.
 - 6. Obtain likelihood function of Negative Binomial distribution.

- (b) Write the answer any THREE: (Each 3 marks)
 - 1. Obtain unbiased estimator of $\frac{kq}{p}$ of Negative Binomial distribution.
 - 2. $\frac{\overline{x}}{n}$ is a consistent estimator of p for Binomial distribution.
 - 3. Obtain MVUE of parameter θ for Poisson distribution. Also obtain its variance.
 - 4. Obtain Operating Characteristic (OC) function of SPRT.
 - 5. Give a random sample $x_1, x_2, x_3, ...x_n$ from distribution with p.d.f. $f(x;\theta) = \frac{1}{\theta}; 0 \le x \le \theta$. Obtain power of the test for testing $H_0: \theta = 1.5$ against $H_1: \theta = 2.5$ where $c = \{x; x \ge 0.8\}$.
 - 6. Obtain estimator of θ by method of moments in the following distribution $f(x;\theta) = \theta e^{-\theta x}$; where $0 \le x \le \infty$.
- (c) Write the answer any TWO: (Each 5 marks)
 - 1. Obtain OC function for SPRT of Binomial distribution for testing $H_0: p = p_0$ against $H_1: p = p_1 (> p_0)$.
 - 2. Estimate α and β in the case of Gamma distribution by the method of moments

$$f(x; \alpha, \beta) = \frac{\alpha^{\beta}}{\Gamma \beta} e^{-\alpha x} x^{\beta - 1}; x \ge 0, \alpha \ge 0.$$

10

9

- 3. State Crammer-Rao inequality and prove it.
- 4. If T_1 and T_2 be two unbiased estimator of θ with variance σ_1^2, σ_2^2 and correlation ρ , What is the best unbiased linear combination of T_1 and T_2 and what is the variance of such a combination?
- 5. Obtain Likelihood Ration Test:

Let $x_1, x_2x, x_3, ..., x_n$ random sample taken from $N(\mu, \sigma^2)$. To test $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$.

- 3 (a) Write the answer any THREE: (Each 2 marks)
 - 1. Define Complete family of distribution.
 - 2. Define Minimum Variance Bound Estimator (MVBE).
 - 3. Define Consistency.
 - 4. Obtain an sufficient estimator of θ by for the following distribution $f(x;\theta) = \theta^x (1-\theta)^{(1-x)}$; x = 0,1.
 - 5. Obtain an unbiased estimator of θ by for the following distribution $f(x;\theta) = \frac{1}{\theta}; 0 \le x < \theta$.
 - 6. Show that $\sum x_i$ is a sufficient estimator of θ for Geometric distribution.

6

- (b) Write the answer any THREE: (Each 3 marks)
 - 1. Let $x_1, x_2x, x_3, ..., x_n$ be random sample taken from $N(\mu, \sigma^2)$ then find sufficient estimator of μ and σ^2 .
 - 2. Obtain MLE of parameter p for the following distribution $f(x; p) = pq^{x}; x = 0, 1, 2, ... \infty$
 - 3. Prove that $E\left(\frac{\partial \log L}{\partial \theta}\right)^2 = -E\left(\frac{\partial^2 \log L}{\partial \theta^2}\right)$.
 - 4. Let p be the probability that coin will fall head in a single toss in order to test $H_0: p\frac{1}{2}$ against $H_1: p\frac{3}{4}$. The coin is tossed 6 times and H_0 is rejected if more than 4 head are obtained. Find the probability of type-I error, type-II error and power of test.
 - 5. Use the Neyman Pearson lemma to obtain the best critical region for testing $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1$ in the case of Poisson distribution with parameter λ .
 - 6. Obtain an unbiased estimator of population mean of χ^2 distribution.
- (c) Write the answer any TWO: (Each 5 marks) 10
 - 1. Construct SPRT of Poisson distribution for testing $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1 (> \lambda_0)$. Also obtain OC function of SPRT.
 - 2. Obtain MVBE of σ^2 for Normal distribution.

9

3. Let $x_1, x_2, x_3, \dots, x_n$ be random sample from the p.d.f.

$$f(x,p) = \frac{1}{(1-q^3)} {3 \choose x} p^x q^{3-x}$$
 where $x = 0,1,2,3$

Estimate parameter of p by the method of moment.

4. For the double Poisson distribution

$$P(X = x) = \frac{1}{2} \frac{e^{-m_1} m_1^x}{x!} + \frac{1}{2} \frac{e^{-m_2} m_2^x}{x!}; 0, 1, 2, \dots$$

Show that the estimator for m_1 and m_2 by the method of moment are $\mu_1' \pm \sqrt{\mu_2' - \mu_1' - (\mu_1')^2}$.

5. State Neyman-Pearson lemma and prove it.